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ABSTRACT 
 

The main part of finite element analysis via the force method involves the formation of a 

suitable null basis for the equilibrium matrix. For an optimal analysis, the chosen null basis 

matrices should exhibit sparsity and banding, aligning with the characteristics of sparse, 

banded, and well-conditioned flexibility matrices. In this paper, an effective method is 

developed for the formation of null bases of finite element models (FEMs) consisting of 

shell elements. This leads to highly sparse and banded flexibility matrices. This is achieved 

by associating specific graphs to the FEM and choosing suitable subgraphs to generate the 

self-equilibrating systems (SESs) on these subgraphs. The effectiveness of the present 

method is showcased through two examples. 

 

Kewords: Finite element force method, graph theory, shell element, null basis matrix, 

flexibility matrix. 
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1. INTRODUCTION 
 

The force method of structural analysis, where the member forces are treated as unknowns, 

is appealing to researchers because the properties of the structure's members typically rely 

more on the member forces than on joint displacements. The force method was extensively 

utilized until 1960. The advent of digital computers and the applicability of the displacement 

method influenced most engineers to adopt the force method. In fact, the excellence of the 

force method in nonlinear analysis and optimization has been overlooked. In the force 
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analysis approach, the quantity of equations to be resolved corresponds directly to the degree 

of statical indeterminacy (DSI) exhibited by the model. On the other hand, the displacement 

method entails a quantity of equations that is in parity with the degree of kinematical 

indeterminacy (DKI), commonly recognized as degrees of freedom (DOF). In scenarios 

where DSI is lesser than DOF, opting for the force method might prove beneficial. One 

notable advantage of the force method is its prompt accessibility to member forces, a pivotal 

necessity in the realm of reliability analysis. 

Yet another benefit of the force method lies in its applicability to various redesign 

challenges and nonlinear elastic analyses. This method enables the resolution of modified 

problems without the need to recommence computations from the initial stages. In scenarios 

involving the optimal design of a structure with a predetermined topology, requiring 

numerous analyses, the force method can offer advantages. The statical basis remains 

consistent for each design across diverse loading cases, contributing to time savings in 

computations when contrasted with the displacement approach. Apart from these 

advantageous aspects, the theoretical appeal of extending the force method as a counterpart 

to the displacement method is significant. For an in-depth clarification of the duality 

concept, interested readers are recommended to consult the work of Argyris and Kelsey [1]. 

As will be demonstrated later, in employing this technique for structural analysis, MATLAB 

is employed to compute the flexibility matrix for each element. Subsequently, a block-

diagonal flexibility matrix is formed from the element's matrix. However, in the 

displacement method, the global stiffness matrix of the structure is assembled from the 

individual stiffness matrices of elements. This step consumes a substantial amount of time in 

the structural analysis using the displacement method. 

There are five distinct approaches that can be adopted in structural analysis using the 

force method, as follows: (i) topological force methods, (ii) graph theoretical methods, (iii) 

algebraic force methods, (iv) mixed algebraic-combinational force methods, (v) integrated 

force method. 

Topological force methods for rigid-jointed skeletal structures have been developed by 

Henderson [2], Maunder [3] and Henderson and Maunder [4]. Methods suitable for 

computer methods are due to Kaveh [5]. Graph theoretical techniques based on cycle bases 

within the graph models were pioneered by Kaveh [6]. These methods are extended to 

encompass various categories of skeletal structures, including rigid-jointed frames, pin-

jointed planar trusses, and ball-jointed space trusses in [7 and 8]. Algebraic techniques have 

been established by Denke [9], Robinson [10], Topçu [11], Kaneko et al. [12], and Soyer 

and Topçu [13]. Combined algebraic-topological approaches have been employed by Gilbert 

et al. [14], Coleman and Pothen [15 and 16], Pothen [17], and Heath et al. [18]. The 

integrated force method has been advanced by Patnaik [19 and 20], in which the equilibrium 

and compatibility conditions are simultaneously met using element force variables. 
Simultaneous analysis and design by force method can be found the work of Kaveh and 

Rahami [21]. 

In force method, the utilization of graph theoretical approaches is categorized into two 

classes of finite element models. The first category pertains to the forces along the edges of 

the elements [22-25], while the second category pertains to the forces concentrated at the 

mid-edge of the elements [26]. In this study, an effective approach is devised for generating 

a null basis for finite element models consisting of rectangular shell elements, resulting in 
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highly sparse and banded flexibility matrices. This method can be employed for optimal 

finite element analysis using the force method. This is accomplished by connecting a 

specific graph to the finite element model and opting for subgraphs (known to as γ-cycles 

[7]) to create localized self-equilibrating stress systems (null vectors). Their numerical 

values are computed through an algebraic procedure in MATLAB. As demonstrated in this 

study, the current approach exhibits efficiency and accuracy compared to alternative 

methods. The superiority of this technique will be illustrated using straightforward 

examples. 

 

 

2. FORMULATION OF FORCE METHOD 
 

Consider a discrete or discretized structure characterized by static indeterminacy. The m-

dimensional vector r comprises independent forces acting on elements (members), and the 

n-dimensional vector p represents the nodal loads. The equilibrium equations of the structure 

can then be formulated as: 

 

Ar p  (1) 

 

where A is an nm equilibrium matrix, r is an m-dimensional vector containing the 

independent element forces, and p is an n-dimensional nodal load vector. Since the structure 

is assumed to be  stable the equilibrium matrix will have full rank, i.e. 

. 

The member forces can be written as the sum of the particular and complementary 

solutions, where q is the t-dimensional vector of the redundant forces. 

 

0 1
qr B p B   (2) 

 

B0 and B1 have m rows and n, and t columns, respectively. Pre-multiplying both sides of 

Equation (2) by A and utilizing Equation (1) results in: 

 

0
IAB   (3) 

 

1
0AB   (4) 

 

In these relations B0 and B1 are not unique for a structure, and numerous matrices of this 

kind can be generated. B1 is referred to as a static basis or self-stress matrix. This basis is 

termed a null basis in mathematics, and each column of the null basis matrix is identified as 

a null vector. The null space and null vectors serve as mathematical equivalents to the 

complementary solution space and self-equilibrating systems, respectively. 

Minimizing the complementary potential energy subjected to the constraint as in Eq. (1) 

requires r to minimize the quadratic form 

n)(rank  ,0nmt  A
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1

2
min ( )t

mimize r F r  (5) 

 

Here, Fm is a mm block diagonal matrix known as the unassembled flexibility matrix 

containing the flexibility matrices of the elements of a structure in its block diagonal entries. 

Combining Eq. (5) and Eq. (2) leads to 

 
1

1 1 1 0( ) ( )t t
m mq B F B B F B p  (6) 

 

Solving this set of equations with accordance to Eq. (6), redundant forces can be 

obtained. After calculating the member forces, using the load-displacement relationship for 

each member, member distortions can be obtained as 

 

   m m

p
B BF Fu r

q

 
                   
 

  0 1  (7) 

 

Nodal displacements can be calculated by virtual work as 

 

0 0[ ] [ ][ ]tB u   (8) 

 

Combining Eq. (7) and Eq. (8) leads to 

 

0 0 0 0 1m m

t t
p qB F B B F B   (9) 

 

Substituting Eq. (6) in Eq. (9) leads to 

 
1

0 00 01 11 10
[ ]D D D D p Fp 

   (10) 

 

where t

ij i m j
D B F B . Therefore, the overall flexibility matrix of structure is obtained as 

 
1

00 01 11 10
F D D D D

  (11) 

 

The effectiveness of an optimal analysis relies on the necessary computational time and 

storage for constructing the matrix and its attributes, such as sparsity and structuring (e.g., 

bandedness), along with its conditioning. To attain optimal analysis through the formation of 

an appropriate matrix G, it is essential to choose a fitting B1 matrix. 

Various algebraic methods, relying on different matrix factorizations like Gauss-Jordan 

elimination, LU, QR, and LQ, are available for creating a null basis matrix B1 from an 

equilibrium matrix A [14,18,28]. A concise overview of the fundamental principles behind 

these techniques is presented below. Suppose matrix A is partitioned using a column 
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permutation matrix P as follows: 

 

1 2
[ , ]AP A A  (12) 

 

where A1 is a nn non-singular matrix. The matrix B1 can be written as 

 
1

1 2
1

A A
B P

I

 
        
 


  (13) 

 

2.1. LU decomposition method 

By employing the LU decomposition method, the LU factorization of A is acquired as 

follows: 

 

PA=LU and 
1 2

[ , ]UP U U  (14) 

 

P and P are permutation matrices of order n×n and m×m, respectively. Subsequently, B0 

and B can be expressed as: 

 

 
1 1

1

0
0

U L p
PB

     
  

 and  
1

1 2

1

U U
PB

I

    
  

 (15) 

 

2.2. QR decomposition method 

Using a QR factorization algorithm with column pivoting yields, where P is again a 

permutation matrix, and R1 is an upper triangular matrix of order n. B1 can be obtained as: 

 

1 2
,[ ]AP Q R R  (16) 

 
1

1 2
1

R R
B P

I

 
        
 


  (17) 

 

2.3. Turn-back method 

Turn back method is available in [11,12] and is briefly outlined in this section. Expressing 

the matrix by column as A= (a1, a2, a3,…,an), a start column is designated as a column for 

which the ranks of (a1, a2, a3, …, as-1) and (a1, a2, a3,…, as) are identical. Put differently, as 

is a start column if it is linearly dependent on the lower-numbered columns. The coefficients 

of this linear dependency provide a null vector, and its highest-numbered non-zero 

component is in position s. It is evident that the number of start columns is t = m – n, 

coinciding with the dimension of the null space of A. 

The start column can be determined by conducting a QR factorization on A, employing 

orthogonal transformations to eliminate the sub-diagonal non-zeros. Assuming that, during 

the QR factorization, no column interchanges are made, and we simply bypass columns that 
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are already zero on and below the diagonal, the outcome will be a factorization in the 

subsequent format: 

 

A = Q 

 

(18) 

 

The start columns are those columns where the upper triangular structure extends to the 

right. In other words, a column s is considered a start column if the highest non-zero 

position in column s of R is no greater than the highest non-zero position in earlier columns 

of R. The Turn-back method finds one null vector corresponding to each start column by 

'turning back' from column s to identify the smallest k for which columns (as, as-1, as-2,…, as-

k) are linearly dependent. The null vector features non-zero elements exclusively in positions 

s−k through s. Consequently, if k is relatively small for the majority of the start columns, the 

null basis will have a small profile. It is noteworthy that the Turn-back method operates on 

the A, and not on R. The initial QR factorization of A is solely used to ascertain the start 

columns and is subsequently discarded. The null vector identified by the Turn-back method 

from the start column as might not have non-zero elements in position s. Consequently, 

Turn-back requires some way to ensure that its null vectors are linearly independent. This 

assurance is achieved by preventing the left-most column involved in the dependency for 

each null vector from participating in any subsequent dependencies. Therefore, if the null 

vector associated with the start column as has its first non-zero element in position s−k, 

every null vector for a start column to the right of as will be zero in position s−k. 

 

 

3. FLEXIBILITY MATRIX AND ELEMENT FORCES OF RECTANGULAR 

SHELL ELEMENT 
 

A set of independent forces must be specified for creating the equilibrium matrix, A. In the 

finite element displacement method, nodal forces, S, are employed for structural 

analysis.[29] These forces are illustrated in Fig. 1. At each node, six nodal forces exist; thus, 

for an element with four nodes, 6N nodal forces can be identified. 

 
Figure 1. Nodal forces for shell element with four nodes 
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In the finite element force method, independent forces must be specified. Considering the 

six equilibrium equations, it follows that 6N-6 independent forces will be retained for an 

element with N nodes. These independent forces are referred to as element forces, F, and are 

depicted in Fig. 2. 

    

    

    

  

 

 

 

  

 

Figure 2. A set of independent forces for shell element with four nodes 

 

These element forces are related to nodal forces through a transformation matrix, T. In 

the case of an element with N nodes, this matrix comprises 6N rows and (6N-6) columns. 

For a shell element with four nodes, this matrix can be characterized using Eq. (19) as: 
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S T F   
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 
 
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 
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 

 

(19) 

 

Formulation of a discrete element equivalent to the actual continuous structure is the first 

step in matrix structural analysis. For a linear system, the stresses are related to the forces F 

by following equation as: 

 

cF   (20) 

 

𝑐̅ is a matrix that shows a statically equivalent stress system due to the unit force F. Now, 

the flexibility matrix can be calculated as follows with taking integration over the volume of 

the element 

 

m
t

v dVf c c  (21) 

 

In the above equation, 𝜑 is the matrix relating the stresses to strains in three dimensional 

problems as: 

 

   (22) 

 

The creation of the flexibility matrix involves establishing the matrix 𝑐̅ . The ith column 

of 𝑐̅ illustrates the resulting stresses due to a unit element force Fi in the force method. 
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Additionally, the resulting stresses caused by nodal forces S are identical to the ith column 

of T in the displacement method. By taking into account the preceding equations, matrix can 

be constructed for the shell element. Subsequently, the flexibility matrix of the element can 

be computed using the Gauss numerical integration method. 

 

 

4. GRAPHS THEORY DEFINITIONS AND ITS APPLICATIONS IN FINITE 

ELEMENT FORCE METHOD 
 

4.1. Basic graph theory definitions 

A graph S consists of nodes N(S) and members M(S). When two distinct nodes are 

connected by a member, they are called adjacent. These nodes are the end nodes of a 

member, and a member is named incident with a node if it is an end node of the member. 

The number of members incident with a node is referred to as the degree of that node. A 

sub-graph Si of a graph S is defined as a graph in which N(Si)N(S) and M(Si)M(S). 

Additionally, each member in Si has the same endpoints as its corresponding member in S. 

A path of S is a finite sequence Pi={n0,m1,n1,...,mp,np} where the terms are alternating 

and consist of distinct nodes ni and distinct members mi of S for 1 ≤ i ≤ p, and ni-1 and ni are 

the two ends of mi. If there is a path between two nodes ni and nj , they are considered 

connected in S. A cycle is a path (n0,m1,n1,...,mp,np) for which n0 = np and p ≥ 3; i.e. a cycle 

is a closed path. The cycles within a graph collectively constitute a vector space recognized 

as the cycle space. The size of this space for a connected graph S is termed first Betti 

number, denoted as b1(S)=M(S)-N(S)+1, where M(S) and N(S) represent the number of 

members and nodes in S, respectively. To convey the topological characteristic of a finite 

element model into the connectivity of a graph, ten distinct graphs have been presented in 

[27,28]. Subsequently, an Interface Graph and an Associate Graph are introduced for a finite 

element model consisting of shell elements. 

 

4.2. An Interface Graph 

The construction of this graph for shell Finite Element Method (FEM) involves the 

following steps: 

Step 1: All nodes within the Finite Element Model (FEM) are included in the Interface 

Graph (IG) of the FEM. 

Step 2: For each edge of a shell element within the FEM, three graph members are taken 

into consideration. 

Step 3: Three graph members are linked to each diagonal of an element within the FEM. 

The depiction of this graph for an element can be seen in Fig. 3. The numbering of nodes 

and edges in the interface graph should align with the numbering system used in the Finite 

Element Model (FEM). For kth element, the edges of the Interface Graph (IG) are assigned 

numbers as follows: 

 

18 1 1 18( ) ; :k i i    (23) 
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Figure 3. Interface graph for a shell element 

 

The member numbering of the interface graph should be executed in accordance with the 

numbering of the FEM, considering the primary nodal numbering of a given element in the 

model. Consequently, for each rectangular element, 18 members of the interface graph will 

be numbered sequentially, following the patterns depicted in Fig. 4 for two, three, and four 

adjacent elements. 

 

 
(a) 

 
 

(b) 

 
 

(c) 

Figure 4. Interface graph for: (a) two elements, (b) three elements and (c) four elements 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.1

.5
78

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

aa
re

f.
iu

st
.a

c.
ir

 o
n 

20
25

-1
1-

26
 ]

 

                            10 / 24

http://dx.doi.org/10.22068/ijoce.2024.14.1.578
https://maaref.iust.ac.ir/ijoce/article-1-578-en.html


INTRODUCTION OF SHELL ELEMENT FOR FINITE ELEMENT ANALYSIS … 

 

125 

4.3. Natural associate graph 

In this graph, each shell element of the FEM is associated with one node, and two nodes are 

connected by a member if the elements share a common edge. The creation of the NAG 

(Node-Adjacent Graph) for Finite Element Model (FEM) can be accomplished through the 

following procedure: A crucial initial phase in FEM involves defining the elements along 

with their interconnected nodes. This process results in the construction of the element 

connectivity matrix, encompassing the relationships between elements and nodes. 

Simultaneously, during the formulation of the element connectivity matrix, an additional 

matrix is generated, known as the node connectivity matrix, which encapsulates node-

element incidence properties. By utilizing both the element connectivity and node 

connectivity matrices, an algorithm can be established, facilitating the efficient generation of 

NAG with a computational complexity of O(n). 

To identify the adjacent elements to the nth element that share either two common nodes 

or one common edge, the first step involves determining the connected nodes to the nth 

element from the element connectivity matrix. Subsequently, utilizing the node connectivity 

matrix, elements that have at least one common node with the nth element are identified. 

This reduced search space is then convenient for identifying the adjacent elements. Fig. 5 

illustrates two Finite Element Models (FEMs) alongside their respective Natural associate 

graphs (NAGs). 

 

  
(a) (b) 

Figure 5. NAG for two finite element models, (a) model with 12 elements and (b) model 

with an opening 

 

 

5. PATTERN CORRESPONDING TO SELF-EQUILIBRATING SYSTEMS 
 

5.1. Degree of static indeterminacy of the FEM 

By considering the interface graph, each shell elements have 18 elemental forces, and Each 

nodes have 6 equilibrium equations. Thus, calculating the degree of static indeterminacy 

(DSI) and forming the self-equilibrating systems of the FEM are replaced by the DSI and 

self-equilibrating systems of the equivalent 3D skeletal model. In this way using the DSI of 

a space skeletal structure with N nodes and M members as, 6N6MDSI   the degree of 

indeterminacy of a FEM is obtained as 

 

DSI = 18E-6 N+6  (24) 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.1

.5
78

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

aa
re

f.
iu

st
.a

c.
ir

 o
n 

20
25

-1
1-

26
 ]

 

                            11 / 24

http://dx.doi.org/10.22068/ijoce.2024.14.1.578
https://maaref.iust.ac.ir/ijoce/article-1-578-en.html


I. Karimi, M.S. Masoudi 

 

126 

where E is the number of shell elements and N is the total number of the nodes of the FEM. 

With the above simulation, the patterns of the self-equilibrating systems can be identified as 

follows: 

 

5.2. Pattern of type I self-equilibrating systems 

Every set consisting of six members of the interface graph, corresponding to two elements of 

the FEM with common edges, is called a self-equilibrating system of Type I. The 

corresponding subgraph contains three SESs. Therefore, the set of six members 

corresponding to the common edges of the three elements i and j (i < j), has three members 

mi, ni and pi (m<n<p), and rj, sj and tj (r<s<t). The three SESs obtained from this set are as 

follows: 

(m,r) with (-1,+1)    and    (n,s) with (-1,+1)    and    (p,t) with (+1,+1)      

i.e. a null vector with non-zero entries (-1,1) in rows (m,r), another null vector with non-

zero entries (-1,1) at (n,s) and another one with non-zero entries (+1,+1) at (p,t) are formed. 

The member with a bigger number is selected as the generator of the current SES and also as 

a redundant force. In other words, when two elements are positioned adjacently in the 

horizontal direction, members 4, 5, and 6 of the left element, along with members 10, 11, 

and 12 of the right element, collectively form three null vectors of type I and generators 

consist of selected members with higher numbers. Furthermore, in the case of two vertically 

adjacent elements, members 7, 8, and 9 of the lower element, alongside members 1, 2, and 3 

of the upper element, collectively form three null vectors of type I. Additionally, generators 

with higher number are selectively chosen. Obviously, the  number of such minimal SESs is 

triple the number of the members of the associate graph, since each member of this graph 

passes from the interface of two elements. Nearly, more than two-third of null vectors for a 

FEM are of this type, corresponding to high sparsity for the null basis matrix. For two 

adjacent elements, these non-zero entries of null basis matrix are shown in Fig. 6. 

 

 

 
(a) 
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(c) 

Figure 6. Two adjacent element and its type I SESs. 

 

5.3. Pattern of type II self-equilibrating systems 

For each two adjacent finite elements (two adjacent nodes in the associate graph) such as i 

and j (i<j), another type of SES can be constructed, which is called a self-equilibrating 

system of Type II. Two adjacent shell elements and their corresponding interface graphs are 

shown in Figure 7(a). The DSI of interface graph can be calculated as: 

 

6666218DSI   (25) 

 

Thus, corresponding to three null vectors, Three null vectors are previously formed using 

six edges in the interface of two elements. Therefore, in order to form the other SESs, the 

generators of three type I SESs should be removed from interface subgraph.  

 

336ITypeDSIIIType   (26) 

 

It should be noted that each subgraph with DSI = 1 corresponds to a SES, the edge with 

the highest number is taken as the generator of that SES. Thus the DSI of remaining 

subgraph equals three and three independent null vectors can be easily extracted. Three 

generators should be selected from subgraphs for three null vectors of Type II. These 

members have been specified by red color in Figure 7(b). An algebraic method such as LU 
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or QR factorization can be used to calculate the numerical values of these three null vectors.  

 

 

 
(a) 

 

 
(b) 

Figure 7. Two adjacent element and its type II SESs. 

 

5.4. Pattern of type III self-equilibrating systems 

In the previous sections, two types of SESs were defined. These systems are sufficient for 

forming null bases of finite element models without openings. However, if a FEM contains 

one or more openings, another type of SESs can be identified, known as self-equilibrating 

system of Type III. In fact, from each opening in the FEM, three independent SESs can be 

extracted. The subgraphs corresponding to these SESs usually have more edges than the 

previous systems, and also their related null vectors have more non-zero entries. 

An opening can be found in model using cycle bases of associate graph. Every cycle of 

NAG(FEM) with more than 8 edges corresponds to an opening, as shown in Fig. 8. 

 

 
Figure 8. Natural associate graph 
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Every opening with M element has 18M members in interface graph. The corresponding 

cycle has M member in associate graph. Thus 3M SESs of type I and 3M SESs of type II can 

be extracted from these M elements. For example, the DSI of model which is illustrated in 

Figure 8 is: 

 

5461668186N6M18DSI   (27) 

 

The number of type I & II is: 

 

2483M3IType   (28) 

 

2483M3IIType   (29) 

 

The remaining subgraph after deleting the generators of type I and II has DSI equal to 6 

as: 

 

   6242454IIIType
IITypeITypeDSI

  
(30) 

 

It means that six SESs can be extracted from remaining subgraph which are called SESs 

of Type III. i.e, for each opening, six SESs can be found which are not in previous SESs and 

are independent. An algebraic method can be used for calculating numerical values of these 

six null vectors. 

 

 

6. GENERAL ALGORITHM 
 

This algorithm consists of the following steps for generating null basis matrix for FEM 

comprising of shell elements: 

Step 1: First, the model is elementalized using shell elements. Then, the nodes and 

elements are numbered appropriately and logically. To obtain a flexibility matrix with a 

suitable structure, existing algorithms can be employed for  node and element numbering. 

Step 2: NAG and Interface graphs are constructed based on the information provided in 

section 4 of this article. Members and nodes of these graphs are also labeled according to the 

numbering of the elements. 

Step 3: Then the rectangular equilibrium matrix of the model is generated. The concepts 

of Kaveh and koohestani's article has been used to consider the support conditions in the 

equilibrium matrix.[30] 

Step 4: Null vectors of type I are created for the adjacent elements as outlined in section 

5, and the respective generators are also identified. 

Step 5: Then, Null vectors of type II are generated for the adjacent elements as explained 

in section 5, and the corresponding generators are also recognized 

Step 6: For each opening in the model, six null vectors are established, recognized as the 
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self-equilibrating system Type III. 

Step 7: All null vectors of type I, II and III are placed together in matrix B1, forming the 

matrix of null vectors for the entire model. In this phase, if there is indeterminacy in the 

supports, the corresponding null vectors are also generated and added. 

Step 8: Null vectors are sorted in ascending order according to the highest number of 

their non-zero components in the B1 matrix, resulting in the matrix of null bases being 

available for all models under support conditions. 

 

 

7. NUMERICAL EXAMPLES 
 

In this section two examples are studied. Models are assumed to be supported in a statically 

determinate or indeterminate fashion. The effect of indeterminate support conditions can 

separately be included with no difficulty [30-32]. However, the null basis matrices for each 

model are calculated using the present algorithm, LU factorization and QR factorization 

methods and the results are compared through computational time (scaled), sparsity, pattern 

of matrices and accuracy. Furthermore, the patterns of the flexibility matrix are evaluated by 

employing the three methods mentioned and compared in terms of structure and sparsity. In 

all the following examples, nnz represents the number of non-zero entries and λmax/λmin is 

the ratio of the extreme eigenvalues taken as the condition number of a matrix. 

 

7.1. Example 1 

Example 1 illustrates a wall structure that is statically indeterminate, as shown in Fig. 9. 

The finite element model shown in Fig. 9(a), comprising 190 shell elements and 266 nodes. 

The model is idealized using shell elements. The model has the following mechanical 

properties: Thickness = 0.3 m, E = 2.5e+9 kg/m2, ν = 0.25. 

 

 

 

 
(a) (b) (c) 

Figure 9. (a) Finite element model of Example 1, (b) node numbering of model, and (c) 3D view. 
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The interface graph and Natural associate graph of the model are shown in Fig. 10. The 

pattern of the equilibrium matrix is shown in Fig. 11. Fig. 12 depicts the pattern of the null 

basis matrices using the present method, LU factorization method and QR factorization 

method. The flexibility matrices are illustrated in Fig. 13. The displacement and rotation of 

blue nodes numbered 1 to 6 are constrained in all directions and are considered as fixed 

supports. Model loading specifications (kgf) in red points of the model are 50, 5, and -100 

for X, Y, and Z directions, respectively. 

 

  
(a) (b) 

Figure 10. (a) Interface graph of Example 1, (b Natural associate graph 

 

 
nz=12196 

Figure 11. Pattern of the equilibrium matrix for Example 1. 

 [
 D

O
I:

 1
0.

22
06

8/
ijo

ce
.2

02
4.

14
.1

.5
78

 ]
 

 [
 D

ow
nl

oa
de

d 
fr

om
 m

aa
re

f.
iu

st
.a

c.
ir

 o
n 

20
25

-1
1-

26
 ]

 

                            17 / 24

http://dx.doi.org/10.22068/ijoce.2024.14.1.578
https://maaref.iust.ac.ir/ijoce/article-1-578-en.html


I. Karimi, M.S. Masoudi 

 

132 

    

nz=26420 nz=124544 nz=756153 

(a) (b) (c) 

Figure 12. Patterns and the number of non-zero entries of the null bases of Example 1: (a) 

Present algorithm, (b) LU factorization and (c) QR factorization. 

 

    

nz=48540 nz=546524 nz=1274982 

(a) (b) (c) 

Figure 13. Patterns of the flexibility matrix t
m1 1G B F B for Example 1: (a) Present algorithm, (b) 

LU factorization and (c) QR factorization. 

 

Table 1. Comparison of the optimality characteristics of the null basis matrices B1 and flexibility 

matrices G for the FEMs of Example 1  

DSI 

The number of 

each type of SESs 

methodLU1

Methodpresent1

Bnnz

Bnnz  
methodQR1

Methodpresent1

Bnnz

Bnnz  

Condition Num. 

1

t

1

min

max BBfor


  Norms max 
1BA  

Type 

I 

Type 

II 

Ty

pe III 
present LU QR present LU QR 

1830 903 903 24 0.2121 0.0349 4.8821e+5 6.3207e+6 6.3e2 3.5601e-14 2.3670e-13 2.0636e-10 
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7.2. Example 2 

Example 2 illustrates a bridge structure that is statically indeterminate, as shown in Fig. 14. 

The finite element model shown in Fig. 14, comprising 324 shell elements and 370 nodes. 

The model is idealized using shell elements. All models share the same nodes and have the 

following mechanical properties: Thickness = 0.4 m, E = 2.5e+9 kg/m2, ν = 0.25. The 

interface graph and Natural associate graph of the model are shown in Fig. 15. The pattern 

of the equilibrium matrix is shown in Fig. 16. Fig. 17 depicts the pattern of the null basis 

matrices using the present method, LU factorization method and QR factorization method. 

The flexibility matrices are illustrated in Fig. 18. The displacement of blue nodes are 

constrained in all directions and are considered as pinned supports. Model loading 

specifications (kgf) in red points in the middle of the model are 0, 0, and -100, in X, Y, and 

Z directions, respectively. 

 

 
(a) 

 

 

(b) (c) 

Figure 14. (a) 3D view of example 2, (b) Finite element model, (c) Node numbering of model 
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(b) 

Figure 15. (a) Interface graph of Example 2, (b Natural associate graph 

 

Tables 1 and 2, contains other optimality characteristics of the force method procedures. 

It is clear that the graph theoretical method forms the most well structured null basis in 

smallest computational time. The results of example 2 are verified by standard displacement 

method in Table 3. 

 

 
nz=20796 

Figure 16. Pattern of the equilibrium matrix for Example 2. 

 

    

      nz=58496       nz=233896       nz=2497789 

(a) (b) (c) 

Figure. 17. Patterns and the number of non-zero entries of the null bases of Example 2: (a) 

Present algorithm, (b) LU factorization and (c) QR factorization. 
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nz=130590 nz=2300226 nz=5592204 

(a) (b) (c) 

Figure 18. Patterns of the flexibility matrix t
m1 1G B F B for Example 2: (a) Present algorithm, (b) 

LU factorization and (c) QR factorization. 

 

Table 2. Comparison of the optimality characteristics of the null basis matrices B1 and flexibility 

matrices G for the FEMs of Example 2  

DSI 

The number of 

each type of SESs 

methodLU1

Methodpresent1

Bnnz

Bnnz  
methodQR1

Methodpresent1

Bnnz

Bnnz  

Condition Num. 

1

t

1

min

max BBfor


  Norms max 
1BA  

Type 

I 

Type 

II 

Type 

III 
present LU QR present LU QR 

3618 1809 1809 0 0.2501 0.0234 1.8994e+03 1.0517e+07 6.8158e+03 2.2204e-16 7.3896e-13 2.0317e-14 

 

Table 3. Comparison among deflections of 10 middle nodes of the bridge for Example 2 

resulting by the displacement method and the present force method. 

Number of  middle (red) 

nodes 

Z-deflection (mm) 

Displacement method Force method 

19 -1.02266 -1.01884 

56 -1.0131 -1.02105 

93 -1.00613 -1.00123 

130 -1.00158 -0.99512 

167 -0.99932 -1.00687 

204 -0.99932 -0.99252 

241 -1.00158 -1.00321 

278 -1.00613 -1.00115 

315 -1.0131 -1.01650 

352 -1.02266 -1.02490 
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7. CONCLUSIONS 
 

The main conclusions of this paper are as follows: 

The solution of many examples reveals that the present algorithm can achieve high 

accuracy. 

The flexibility matrices obtained are highly sparse and narrowly banded. This is 

attributed to the utilization of regional cycles of the natural associate graphs and the 

appropriate ordering of the selected self-equilibrating systems. 

The conditioning of the flexibility matrices generated by the present algorithm is superior 

to those formed by the LU method. 

Because of a high reduction in the number of floating point operations, the resulted null 

basis has better accuracy in comparison to other methods, this is obvious since nearly 50% 

of the null vectors are selected without numerical analysis, and the remaining null vectors 

are obtained by working on small and limited lists. 

The method developed in this paper can be easily extended to finite element models 

(FEMs) with higher-order elements. It should be noted that in the present method, the most 

crucial aspect is the selection of an independent element forces system. 

The use of higher-order elements in the force method results in fewer unknowns 

compared to the displacement method. 

The computational time required for the present method is significantly lower than that of 

algebraic methods. Since the complexity of the LU method is O(n3), if the DSI of the model 

increases, then the time difference dramatically rises. 

In the present method, numbering the nodes of a finite element model is less important 

and only a suitable ordering of the members of the natural associate graph is required to 

reduce the bandwidth of the flexibility matrices. 
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APPENDIX A. NOTATIONS 
 

Index Description 

FEM finite element model 

S nodal forces 

F elemental Forces 

SES self-equilibrating system 

A equilibrium matrix 

B1 self-stress matrix 

Fm unassembled flexibility matrix 

G flexibility matrix 

N number of nodes of FEM 

M number of elements of FEM 

IG interface graph 

NAG natural associate graph 

NIN negative incidence number 

Type I self equilibrating 

system 

self-equilibrium system which is constructed on a 2-multiple 

member 

Type II self equilibrating 

system 

self-equilibrium system which is extracted from two adjacent 

elements of FEM 

Type III self 

equilibrating system 

self-equilibrium system which is extracted from cycle of the 

NAG 

DSI degree of statical indeterminacy 

M′ number of members of the associate graph of the model 
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